Access buttons and macros (acc-t10)

[image: image14.png]]

[image: image15.png]

 TITLE * MERGEFORMAT
Access buttons and macros

Practical workbook

[image: image16.png]

Document information

Course documents and files

If you are working in the training room the files you need are in C:\User\Access\Macros.
If you want to work through the practical tasks shown in this document on your own system, obtainthe necessary files from:

www.bristol.ac.uk/is/learning/documentation/docs-current.html#acc-t10.
You will see a link to Practice files. This contains the files you need to work through the course notes. In Internet Explorer you extract the files as follows:

· Click on Practice files;
· Choose Save.
· Browse to where you want to save the file and click on Save (the practice files are grouped together, and you need to extract them to be able to use the individual files);

· Go to the file you have just saved, and Open or Run it to show the Self-extracting Archive box;

· Select where to extract (save) the files on your system using [image: image17.png]

the browse button (as shown opposite);

· Click Start to save the files.

Related documentation

Other related documents are available from the web at:
www.bristol.ac.uk/is/learning/documentation/docs-by-category.html#db.
[image: image18.png]

[image: image19.png]Universiy of Bristol
Information
Services

Contents

Document information

1Task 1
Look at sample buttons

2Task 2
How to create a button

4Task 3
Running a macro

4Macro toolbar

6Task 4
Creating a simple macro

7Opening a form using a macro

9Task 5
Run macros using buttons

11Task 6
Displaying messages

12Task 7
Changing properties and values

14Task 8
Conditional macros

15Useful additional macros

16Task 9
Refresh/Repaint/Requery

18Task 10
Controlling navigation

19Task 11
Dropdown box retrieval

22Task 12
Adding a new record when it is not in the list

25Task 13
Importing and exporting files

27Task 14
Events

29Sequence of events

30Type of events

31Appendix A
Limitations of macros

32Appendix B
Macro actions by category

32Opening and closing tables, queries, forms and reports

32Actions that can print data

33Testing conditions and controlling action flow

33Setting values

34Searching for data

34Building a custom menu and executing menu commands

34Informing the user of actions

35Controlling display and focus

36Renaming, copying, deleting, importing and exporting

36Running another application for MS-DOS or Windows

37Appendix C
Data events

39Filter events

40Focus events

42Keyboard events

43Mouse events

44Print events

45Window events

46Error and timing events

47Appendix D
Order of events

47Order of events for controls on forms

Task 1 Look at sample buttons

Objectives To get familiar with what buttons can do.

Comments Buttons make it easier for people who have no knowledge of Access to be able to use a database that has already been set up. They can also simplify use of the database.

1.1 Open the treatment database in C:\User\Access\Macros.

On the opening form, notice that there are several different kinds of button, either with text or icons on them. Note also that scroll bars, dividing lines and navigators have been removed.

[image: image1.png]Demonstration of macros and buttons

[Opening forms with different techniques

Open Patients Farm using tuttan wizard

[Ciosing this form with different techniques

Questioning Close Form (edited wizard code)

Figure 1 - form showing sample buttons

· Press each one in turn noting what they do. The close buttons return you to the main database window so keep running the Front form to look at the rest of the buttons.

· Select the Patients button to look at the Patients form. This has buttons for navigation, finding patient records and previewing labels.

· Hover over the buttons and notice the tools tips that appear, and the status message at the bottom of the screen when you actually click a button.

Task 2 How to create a button

Objectives To create a form with command buttons.

Comments When using the toolbox to create a button, make sure that the wizard button is pressed before you start.

2.1 Look at the Patients form and check out all the buttons.

2.2 Create a columnar form based on the Patients table and save it as My patients.

· Make enough room on the form header to accommodate the buttons.

2.3 To create buttons, proceed as follows:

· [image: image20.png]

In Design View, select the Button icon from the toolbox, making sure the wizard is enabled. Draw the button on the form roughly the size and position you want it.

· You will now be asked which category you wish to choose.

Note The categories are:

	Record Navigation
	find using the binocular search and goto first, last, next, previous record

	Record Operation
	add, delete, duplicate, print, save, undo record

	Form operations
	apply form filter, edit form, open, close, print a form, print current form, refresh

	Report Operations
	print, preview , mail and send to a file

	Applications
	run Excel, Word, Notepad, Application, quit

	Miscellaneous
	auto dialer (needs a modem), print table (print the data that the form is based on in datasheet format), run a macro, run a query

[image: image2.png]What acton do yau wank to happen when the button s
pressed?

- Difrent actions are avaiabl for each category,

Categories Actons!
Record

Record Operations Find Record

Form Operations (Goto First Recard
Report Operations (Goto Last Record
Appication (Goto Next Recard
Miscelancous (Goto Previous Record

Cancel <Beck. et > Erish

Figure 2 - command button wizard

· Choose an action from record navigation and press Next.

· Choose a button with a picture and press Next.

· Give your command a relevant name (so you can identify it if you want to change the tab order of the form or use the expression builder).

[image: image3.png]0 you want text or a picture on the button?

I you choose Text, you can type the text to diplay. 1f you

- chaose Picture, yoi can cick rowse tofind a picturs o csplay.

Cancel

<gack

Corets [Frdtied
& ikl Browse,
I~ show all Pictures
et > Erish

Figure 3 - command button wizard (picture option)

2.4 Add some buttons from each category, choosing either text, the suggested picture, tick to show all the pictures, or browse for a picture (type bmp or ico, not jpg or gif).

2.5 Look at the properties of the button.

· Look at the Other properties.

ControlTip Text gives the message when you hover over the button.

Status Bar Text gives the message at the bottom of the screen when you click on the button.

Default: Yes means that the button is also activated by pressing the <Enter> key.

Cancel: Yes (best on a cancel type button) means that the button is also activated by the <Escape> key as well as the <Enter> key. One would set both Cancel and Default to Yes in this case.

Tab Stop means that you can use the <tab> key to move to it.

· Look at the Format properties.

· Remove the button picture by deleting (bitmap) from Picture and try changing the caption.

· Look at the Event properties. You will notice that an Event Procedure has been inserted for the On Click event. ‎Task 5 will show you how to change this.

Task 3 Running a macro

Objectives To show how you can run a macro in several different ways.

Comments You can execute a macro using various methods. The method is often dependent on when and where the macro will execute.

When you open the treatment database, you may have noted that it does not show the normal main database window. When you press the Close using a macro button, this will return you to the familiar database window. The action of pressing this button actually runs a macro. This is the first way of running a macro.

3.1 Select Macros from the main database window and you will see a list of macros already created.

· Select the autoexec menu and select Run. You will see that the form with buttons appears again. This is the second way of running a macro (Double-clicking the macro has the same effect).

If a macro is called autoexec it will be run automatically when the database is opened as you saw in this database. This is equivalent to setting the Form Display / Page from the Tools / Startup menu. To bypass this, press the <Shift> key on opening the database.

3.2 Look at the design of the autoexec macro. You will see it has two actions - the first to open a form, the second to maximise the window.

· Select the ! icon. This is the third way of running a menu.

Macro toolbar

The macro toolbar contains familiar editing tools for creating and editing macros.

[image: image4.png]|2 Fie Edt View Insert Run Tooks Window Help

B2RY|sma o

	In addition, it contains buttons to:
	

	show or hide macro names
	[image: image21.png]

	show or hide condition columns
	[image: image22.png]]

	 run the first macro listed in the sheet
	[image: image23.bmp]

	single step: to help troubleshoot by running through each macro one step at a time
	[image: image24.png]

	build: to help create expressions
	[image: image25.png]

3.3 Go back to the macro design and select Run from the macro menu (rather than the icon) whilst still in design. You now have the choice of running the entire macro or stepping through it.

· Click Single Step on the toolbar.
· Click Run on the toolbar. You now see the Macro Single Step dialog box. Click Step to carry out the action.

· Click Halt to stop the macro and close the dialog box.

· Click Continue to turn off single stepping and run the remainder of the macro.

Note To halt a macro while it's running, and then single step through it, press the <Ctrl + Break> keys.
Note You can also run a macro from another macro.

Task 4 Creating a simple macro

Objectives To create a new macro and run it.

Comments A macro is a set of one or more actions that each perform a particular operation, such as opening a form or printing a report. Macros can help you to automate common tasks. For example, you can run a macro that prints a report when a user clicks a command button.
If you want to group several related macros in one place rather than keeping track of them separately, you can organize them as a macro group. You can also use a conditional expression to determine whether in some cases an action will be carried out when a macro runs.

4.1 From the Macros window, select New. A window appears.

When you create a macro, you enter the actions you want to carry out in this portion of the Macro window.

[image: image5.png]2 Macrof : Macro

Acton

Openview
Outputro
printout

Quit

Rename
RepaintObject
Requery

Figure 4 - enter actions here

· In the first action line, use the dropdown box to find OpenTable.

You can either type the action name or select it from a list in the action column. Appendix B gives a summary of macro actions available. Many duplicate the steps you take when you work interactively with Access.

4.2 Once the action is selected, the bottom pane displays any required action arguments. Arguments are special properties which control the behaviour of an action. For example, the OpenTable action has the arguments:

Table Name: to give the name of the table.

View: to define whether to look at the table in datasheet, design or print preview.

Data Mode: to open for Add, Edit or Read Only.

4.3 Dropdown boxes alongside each argument, show the valid arguments. Arguments will vary according to the action selected. Some arguments will allow you to use the expression builder if you need to name specific controls. A help message and description of the selected argument appears in the lower right hand corner. The Zoom box (press the right mouse button) can be used if the argument is too long.

· In this task, choose the Patients table in Datasheet view and Edit mode.

· It is useful to add a description for the purpose of the action in the Comment field.

· Save the macro as Show_patients and run it using one of the methods described in the previous task.

4.4 Try editing the macro attributes to show different view and data modes and test them out. You will need to save it each time before you can run it.
Opening a form using a macro

4.5 Create a new macro to open a form. The action to open a form is OpenForm.

The arguments are:

Form Name: to specify the name of the form to be opened.

View: to specify whether to open the form in Form, Design, Print Preview or Datasheet View.

Filter Name or the where condition to specify whether you want to restrict the records that the form displays.

Data Mode: to specify whether you want to allow adding new records without the ability to edit existing records, edit existing and new records, or view only.

Window Mode: to specify whether the form is hidden or minimised, behaves like a dialogue box, or has the mode set in its property sheet. Use:

· Normal to open maximised in the mode set by its properties.
· Icon to open minimised.
· Hidden, or Dialog (Modal and Popup properties set to Yes). A modal form stops you from accessing other objects until it is closed or hidden and the macro is suspended. A modeless (Popup=Yes, Modal=No) form allows you to access other objects while the form is open.

Note The View and Window Mode arguments are required and have default values. Form name is required but has no default - the dropdown box displays the list of existing forms.

When a default value is not entered for an argument, the on-screen help box on the right indicates whether the argument is required.

When an argument can be set to an expression, a build button (signified by three dots) appears to the right of the argument box to help you build the expression.

Filter Name uses an existing query. The Where condition lets you use the expression builder to add the condition (or if you know SQL you can type it in directly omitting the word where). Note that if you get the condition wrong, it will not let you save the macro.

4.6 Enter the following arguments:

· Form name: My patients.

· Where condition: [Gender] = “f”.

· Run the macro and note that the form only shows female patients.

· Save the macro as Patient_sex.

· Try changing the condition to a parameter query.

Note The control name in the condition field sometime needs the full control name (eg, Forms![Patients]![Gender]) and other times, just the control name as above. If one way doesn’t work, try the other.

Use a Where clause when it is a one-off condition, since it is easier to check what the macro is doing, and uses the query/ table that the form is built on.

Use a query if it applies to several macros, but be careful that the query uses the query/table that the form is based on.

Task 5 Run macros using buttons

Objectives To create a button that runs a previously created macro.

Comments If you want to run a macro, you need to create the macro before you create the button. Use a macro if you want the button to do more than one action. There are two ways to create a button to run a macro - use the toolbox button with the wizard or without the wizard.

5.1 Open your form My patients in design view and make sure the toolbox is showing.

Create a button using the wizard

5.2 Create a button as in ‎Task 2 but choose the Miscellaneous option and the Run Macro option.

· Choose the Patient_sex macro from the list.

· Add a suitable piece of text for your button.

· Give the command a name.

· Test out your button.

Create a button without the wizard

5.3 Make sure the wizard button is turned off on the toolbox.

· Create your button as before. This time you will see an empty button with Commandnn written on it.

· Double-click the button to get the properties window and click on the Event tab.

[image: image6.png]' Command Button: Command54

[Commands#

Fomat| ota Event | oter | A1 |
onerter.

neae
OnGathocs’
OntostFocs
P
nomiGie. .
nMovseSovn
s ove
Ontossalp:
Onkerpown
OnKey Up
oy press.

Show_patients
techniaue 1 concelbution_[v]

Figure 5 - choose the macro to run

· Find the On Click property and use the dropdown list to find the macro you called Patient_sex.

· Click on the Format tab and change the Caption to something relevant.

· Test out your button again.

Task 6 Displaying messages

Objectives To learn how to send custom-built messages.

Comments By using MsgBox you can display messages on the screen. This can be useful for troubleshooting, or for telling the user extra information.

6.1 Create a macro to display a message. The action to send a message is MsgBox.

The arguments are:

Message: to specify the message. It can be text (not enclosed in quotes) or an expression (preceded by =).
The @ sign can be used to format in three sections. The first section of text in the message is displayed as a bold heading. The second section is displayed as plain text beneath that heading. The third section is displayed as plain text beneath the second section, with a blank line between them. For example: Data Entry Form@This form is brilliant for naive users.@Don’t forget to look out for extra help at the bottom of the screen.
Beep: Yes to beep (can be annoying!). The default is Yes.

Type: Indicates which symbol to use in the message (Critical, Information, Warning?, Warning! or None).

Title: The text displayed in the message box title bar above the message box. If you leave this argument blank, "Microsoft Access" is displayed.

· Decide why and when you want to send the message. For example you may want to warn someone that they must not double-click on a button so you would create an appropriate message and place it on the DoubleClick event of the button). You may want to give information about what happens after you leave the field. Task 8 shows a message box being shown depending on what value has been typed in a control box.

· Set the message, beeb, type and title.

· Experiment with different types, and try formatting the message as described above.

Example:

The frontclose macro runs when you click the button on the front page form and send a message before the form is opened.

Task 7 Changing properties and values

Objectives To learn useful macros for forms and reports such as how to change a value for a form or report.

Comments You may want to change a data value depending on another value shown on the form. You may want to change the property depending on a value. You may want to calculate a value in an unbound control (but not a calculated control).

7.1 Create a new macro using the Setvalue action. It has two arguments (normally fully qualified with name of the form etc):

Item: the name of the control. For example: Forms!My patients.Caption (caption of My patients form), Forms!My patients!doctorgender.column(1) second field of doctorgender combo box, Reports!Reportname.section(3).visible page header property.
Expression: what you set it to (text surrounded by quotes, date by #).
Note Setvalue is used to change a single value on a form or report. If you want to change the data in a table using a query you must use the OpenQuery or RunSQL action.

7.2 To set the Item argument, use the expression builder on item by clicking the three dots.

· Click on All Forms (or Loaded Forms if the form is already open) and select the name of the form My patients.

· The bottom middle screen shows the names of the controls. Note that the labels have names preceded by text and have less properties. Select Date of Birth.

· The right bottom screen shows the properties of the controls. Select the Visible property and double-click.

In the top screen Forms![My patients]![Date of Birth].Visible appears, identifying that the Visible property of the gender value is to be changed by the patients form.
· Click on OK.
Note The expression builder will not necessarily be of much use unless you are setting the value from another control or you want to build an expression using functions. You may find it easier to look at the appropriate properties of the form to check the value.

7.3 Set the value of the expression to No. The possible values of visible are Yes or No.

· Save the macro as Set_Value.

· Look at the design of your My patients form. Add a button to run the macro.

· Look at the Format properties of a field.

· Look at visible property and use the dropdown box to confirm possible values.

· Look at forecolor and note that the colour is given as an integer. Use the expression builder to look at the numerical value of another colour. The macro would expect the integer value to be placed directly into the macro.

· Edit your Set_Value macro to change the colour of a field.

Note When you use SetValue, Access does not check the validation rule set by the form or table, nor does it check any input mask.

When you change a value, the control does not recognise the BeforeUpdate, AfterUpdate or Change events, nor BeforeInsert and AfterInsert. The events that buttons should be placed on will be discussed later, as well as the order of events.

When referring to a control on a form other than the form that launched the macro you must refer to the full identifier syntax of [Forms]![FormName]![ControlName] or [Forms]![MainFormName]![SubFormName]![ControlName] which need not necessarily be the current form.

Task 8 Conditional macros

Objectives To set conditions so that your macro only runs if the condition is true.

Comments You can use any expression that evaluates to True/False or Yes/No in a macro condition. The macro will be executed if the condition evaluates to True (or Yes).

8.1 Start a new macro and click on the Conditions button shown below. A new condition column will be added to your macro design.

[image: image7.png]e Edt Vew Insert R Tods Window Hep

HR|ERY | @|o- o | 5[]

Figure 6 - add a condition to your macro

· You can type a condition in directly so for this example type the following:

[Forms]![My Patients]![gender]="f".

· In the action column choose the action Msgbox and arguments as below.

[image: image8.png]Message This ia a female patient!

Type Information
Tite Sex of patent

Figure 7 - arguments for macro
· Save the macro as Patient_Condition.

· Open the form My Patients and browse to a female patient.

· Run the macro using Tools / Macros / Run Macro and choose the macro just created.

· Now try the same macro on a male patient.

· Try to edit your macro to show the correct message whatever the sex.

Note You can set a condition by right-clicking in the Condition column and choosing Build to bring up the expression builder.

8.2 Add more actions after the gender=f action, such as setting the forecolor of gender to red, and making the birthdate invisible. Make them relevant to the condition by typing three dots in the condition area for each action so that they only happen when the gender is f.

· Add more actions for gender=m since you need to reset them.

8.3 Look at the conditional macro used on the Patients demo form.

Note The conditional macro is placed on exit from the gender and date of birth fields and on current of the form. Look at the use of StopMacro to avoid processing the rest of the actions.

Useful additional macros

The following tasks are examples of other macros you may like to try out in your own time.

Task 9 Refresh/Repaint/Requery

Objectives To learn how to make sure the most up-to-date data is being shown.

Comments To display new records, you must requery both the controls and the form. Separate actions are needed because Access can requery only one object at a time. Refresh, RepaintObject and Requery are all described.

There are several situations when controls on the active form do not display the most current data.

Changing or adding the values in a lookup table does not refresh the combo box or list box that is open and based on this table. (Interactively one has to press the Record refresh button or press the <F9> key to update the combo box).

If you have two open forms, changing the data in one form will be updated automatically. But if you add a new record to a form, the second will not show it. One has to requery the form (interactively by pressing the <Shift + F9> keys) to show the new record.

You can use macros to automate these updates.

9.1 Create a combo box to show the appropriate values depending on the value of the previous field

· Open your My patients form in Design View and open the toolbox.

· Create a combo box from the doctors table called doctorgender showing all the fields but do not choose Store the value in this field, instead use “Remember the value for later use”. Check that the combo box works.

· Open the form in Design View and look at the properties of the combo box.

· On the data tab and in the row source add the following at the end of the SQL statement:

where gender=Forms![My Patients]!gender
order by [family name].
· Open the form and look at the values in the combo box. You will see that only female doctors are shown because the patient is female.

· Look at the next patient. You will notice that although the patient is male, it is still showing female doctors so the combo box must be refreshed. You can use the <F9> key, or create a macro to do it automatically.

9.2 Look at the Event properties of the combo box field. Click in On Enter.

· Click the three buttons and use Macro Builder to create a macro where the action is Requery and the control name argument is the name of your combo box.

Note You could also place the same macro on exit from the Gender field.

9.3 Macro commands to update data:

RunCommand - to automate the Refresh command. RunCommand is used to run a built-in Microsoft Access command. The command may appear on a Microsoft Access menu bar, toolbar, or shortcut menu. Refresh shows any changes you or other users have made to the currently displayed records in forms and datasheets.

RepaintObject - to complete any pending screen updates and pending recalculations of controls due to SetValue. It does not requery the data source and does not update the currently displayed records to reflect changes made to the data in the underlying tables. Since it does not cause a requery of the database, it does not show new and changed records, or remove deleted records from the object's underlying table or query. The RepaintObject action does not have the same effect as choosing the Refresh command from the Records menu.

Requery action - to requery the source of the object or one of its controls. You can use the Requery action to update the data in a specified control on the active object by requerying the source of the control. You must use the name of the control and not include the full Forms syntax. If no control is specified, this action requeries the source of the object itself. Use this action to ensure that the active object or one of its controls displays the most current data. It has the same effect as the Refresh command. When a form contains controls that have separate data sources such as combo boxes, use separate Requery actions for the form and for each combo box. If you want to requery a control that isn't on the active object, you must use the Requery method in Visual Basic, not the Requery action.

ShowAllRecords action - to display the most recent records and remove any applied filters.

Task 10 Controlling navigation

Objectives To learn how to use the GotoControl macro on a form.

Comments You can make navigation of a form easier by going to a specified field after a particular event has happened.

You can use the GoToControl action to move the focus to the specified field or control in the current record of the open form, form datasheet, table datasheet, or query datasheet. You can use this action when you want a particular field or control to have the focus. This field or control can then be used for comparisons or FindRecord actions. You can also use this action to navigate in a form according to certain conditions. For example, if the user enters No in a Married control on a form, the focus can automatically skip the Spouse Name control and move to the next control (providing you are using the tab key to navigate).The GoToControl action has the following argument:

Control Name - the name of the field or control where you want the focus. Enter the field or control name in the Control Name box in the Action Arguments section of the Macro window. This is a required argument.

Only enter the name of the field or control in the Control Name argument, not the fully qualified identifier, such as Forms!Products![Product ID] else it will fail with an error.
10.1 Create a new conditional macro to go to the town field on the My Patients form for gender=”f”.
10.2 Assign it to the Exit event of the gender control.
· You can not use the GoToControl action to move the focus to a control on a hidden form.

· You must use 2 actions to move to a subform control, otherwise you will get an error message saying it can not find the control.

You can use the GoToControl action to move to a subform, which is a type of control.

You can then use the GoToRecord action to move to a particular record in the subform.

You can also move to a control on a subform by using the GoToControl action to move first to the subform and then to the control on the subform. Refer to a control in a subform by:
forms!mainformname!subformname!controlname.

Note GotoRecord is used to go to a specific record.

Task 11 Dropdown box retrieval

Objectives To select records using a combo box which displays which values are available.

Comments By responding to the AfterUpdate event of a combo box, you can let the user choose records from a list. You will also want to update the combo box when the user navigates to another record in other ways. Access does give you the option of finding a record (only once) on a form based on the value selected on the combo box when you use the combo box wizard but is less flexible.

11.1 Open the form based on the treatment table called Technique 2 macro version find record as an example. Look at the combo box in the form header and note that it finds records based on the patient you choose.

The following instructions will show how this form was designed. If you want to do the exercise yourself, you will need to change the names with which you save the form and macros, otherwise you will overwrite to ones already in the database.

11.2 Create a new form based on the patient table.

· Create an unbound combo box named selectpatient in the form header to display the patient names in family name order. Note that patientID is also selected (but hidden by specifying zero width) so that the primary key patientID can be used to find the right person in the treatment form.

· Edit the row source property of the combo box to display the name together.

SELECT DISTINCT [patientID],[given name]&” “&[family Name]
FROM patients
ORDER BY [family Name];

Note The primary key will automatically appear in the combo box source as the first field if you use the wizard, and all sorts of complications can arise if it is not included.

11.3 Create an unbound list box named no_treatment to show a count of treatments for that patient. This will match the patientid of the treatment table with the combo box value from the list of names.

· The row source of the list box should be:

select count(*)
from treatment
where [selectpatient]=[patientid].
11.4 Create five-step macro Technique 2 afterupdate for after update event of the combo box. Add conditions by pressing the Condition icon. The first three steps and last step do not have a condition; step 4 will be performed when patientid is not equal to selectpatient.

	condition
	action
	Description

	
	setwarnings
warnings on: yes
	To show icon when a message is displayed

	
	Gotocontrol
control name: patientid
	To set the focus to the patientid field

	
	Findrecord
findwhat:=[selectpatient]
match: whole field
match case: yes
search: all
search as formatted: no
only current field: yes
find first: yes
	To find the selected record corresponding to the one selected from the combo box. This not a filter search but a binocular search, searching on the primary key. The name of the control is given as the argument. Note that the = sign signifies an expression and shows that you are looking for the value of a field rather than a constant. Must set find first to yes because otherwise if the combo box is used to search another patient, it does not start from the first treatment record again, with confusing results.

	[selectpatient] <>[patientid]
	Msgbox
message: no treatments found
beep: no
type: information
title: finding patient treatments
	Check if the combo box patientid matches any patientid in the treatment form (the names of the controls must be used – they may differ from the fieldname) and display a warning message if no treatments found from the combo box check.

	
	requery
control name: no_treatment
	Make sure that the number of treatments match the patient displayed in the combo box. This will always be recalculated so it is not part of the macro condition. The control name must be specified. This makes sure the combo box is not refreshed to show the first persons details.

Note CancelEvent is a useful action to use if you want to stop the macro processing any more.

11.5 Add macro technique 2 afterupdate to the AfterUpdate event of the combo box.

11.6 Create a two action macro technique 2 current so that when a user changes records, the combo box in the header matches.

	setvalue
item: selectPatient
expression: [PatientID]
	Set the patient shown in the combo box to the patient shown in the treatment records

	requery
control name: no_treatment
	Make sure that the number of treatments match the patient displayed on the current treatment record

11.7 Add macro Technique 2 current to the OnCurrent event of form .

First the OnCurrent event fires off to make the combo box show the patient of the current treatment record being shown, and the appropriate number of treatments. When the user selects a patient from the combo box, the AfterUpdate event fires off, sets the warning, goes to the patientid field (of treatments since the form is based on treatments), and tries to find a record based on the patientid of the combo box. AfterUpdate then continues and the patientid from the treatments table is then matched with the patientid of the combo box based on Patients to see if there are any treatments. If not, a warning message is displayed. no_treatment is then recalculated. The requery needs to be on both macros in case the user navigates through the treatment records using the navigation buttons.

11.8 Try using the combo box wizard to do the same thing. You will notice the combo box selection works the first time, but then looking at another person on the combo box does not pull up another persons details.

Task 12 Adding a new record when it is not in the list

Objectives To update the lookup table automatically when a dropdown box based on the lookup table has not contained the value entered in the field.

Comments If you want to add a new record rather than selecting an existing one, you need to allow the user to make the entry, and then add the new entry to the list. You can perform these actions in response to the NotInList event. This task is harder than you first think, because requery only works on the current form, and you can not requery until the new value is in the lookup table. This also means that you forget which value you have just added. If you use a macro you will have to copy the unknown value into the drug form manually. A procedure would allow you to keep the value.

12.1 Open the form (Forms![Technique 3 macro version- not in list]) as an example.

· Try putting in a treatment that is not on the list and then add it to the new form that will appear.

The following instructions will show how this form was designed. If you want to do the exercise yourself, you will need to change the names with which you save the form and macros, otherwise you will overwrite to ones already in the database.

· Create a form based on the treatment table.

· Create a combo box from the drug table for fields drugID and drug Name, making sure that its name is also drugID and that it is ordered by drug Name.

Row source should be:

SELECT DISTINCTROW [drug Name], [drugID]
FROM drugs
ORDER BY [drug Name];

· Create a second drugID control as a text box with control name DrugIDbuffer. This is used to remember the new drug entered in the lookup form.

12.2 Create a macro Technique 3- not in list to open the drug form when the item is not in the list.

Note If one uses Access Basic, one can ask the user whether they want to add a new drug or not.

	Set Warnings
Warnings on: no
	Turn the system messages off since want to add own message and don’t want an Access message to pop up.

	MsgBox
 message: Will add a new drug
 beep: no
 type: warning!
 title: drug Not In List
	Display message box stating user is adding a new drug.

	SetValue
item: drugid
Expression: 1
	To avoid the Access error message about not being in list when the field is requeried, set it temporarily to 1. Unfortunately, you can not make the form remember what value you typed because the value was invalid so can not accept it

	OpenForm
form name: Technique 3_(drug form used by macro version)
View: form
data mode: add
window mode: normal
	Open Add drug form to add the Drug Name value.

· Add Technique 3- notinlist macro to not in list event procedure on the drugID field. This means the macro will only fire only if the drug is unknown.

12.3 Create a form (Technique 3_(drug form used by macro version) based on the drugs table so that new drugs information can be updated when added by the main form.

12.4 Create macro Technique 3 drug unload.
	Setvalue
 item: Forms![Technique 3 macro version- Not in List]![drugIDbuffer]
expression: Forms![Technique 3_(drug form used by macro version)]![drugID]
	Set value of drugID in the text box in the treatment form to the value you have just typed. This will automatically change the value in the combo box but generate a message that the value is not in the combo box - true but annoying.

· Add the macro on the drugs form for form afterupdate.
12.5 Create a macro Technique 3- close to close the drug form.

	Close
object type: form
object name: Forms![Technique 3_(drug form used by macro version)]
save: prompt
	Close the drug form and go back to the Treatment form.

	Requery
control name drugid
	Display an up-to-date list of drugs on the Treatment form, and it will show the new drug that you have just entered for the new treatment record.

· Add the macro on the drugs form on form unload.

12.6 Create a button to close the drug form using the close macro.

12.7 Try running the new Treatment form.

· Watch what happens when you add an unknown drug.

· Check the Drugs table.

12.8 You can make the DrugIDbuffer field not visible when you are happy with it.

Note Combo box fields (eg, combofield) can be referred to by combofield.column(0) for the first column, column(1) from the second and so on. This task is easier using Visual Basic.

Task 13 Importing and exporting files

Objectives To learn which macros should be used to create an output file, or import a file in a specified format.

Comments TransferDatabase, OutputTo, SendObject and TransferFile will be described.

13.1 TransferDatabase imports, exports or links data from a Microsoft database object to another database (similar to File / Get External Data or File / Export).

Arguments:

Transfer type: Import, Export or Link;

Database type: Microsoft Access, dBase, Jet or Paradox;

Database name: Full pathname of the database;

Object type: Table, Query, Forms, Report, Macro, Module etc;

Source: Name of the object;

Destination: Name of the object in the destination database;

Structure Only: Yes if the data is not to be imported, No if it is.

13.2 TransferSpreadsheet imports, exports or links data from a Microsoft database table, query or form spreadsheet to the specified spreadsheet (similar to File / Get External Data or File / Export).

 Arguments:

Transfer type: Import, Export or Link;

Spreadsheet type: Microsoft Excel, Lotus;

Table name: Name of the Access table/ query;

File Name: Full path name of the spreadsheet file;

Has field names: Yes if the first row of the spreadsheet contains the names of the fields. Default is No;

Range: The range of cells to import or link. Leave this argument blank to import or link the entire spreadsheet.

13.3 TransferText imports, exports or links data from a Microsoft database table, query or form spreadsheet to a delimited, fixed width, html text file or Microsoft Word mailmerge file (similar to File / Get External Data or File / Export).

Arguments:

Transfer type: Import Delimited, Import Fixed, Import HTML, Export Delimited, Export Fixed, Export HTML, Export Word for Windows Merge or Link Delimited;

Specification Name: The specification name for the set of options that determines how a text file is imported, exported, or linked. For a fixed-width text file, you must either specify an argument or use a schema.ini (can be created when you use File / Save As) file, which must be stored in the same folder as the imported, linked, or exported text file;

Table Name: Name of the Access table / query;

File Name: Full path name of the text file;

Has field names: Yes if the first row of the text file contains the names of the fields; Default is No;

HTML Table Name: The name of the table or list in the HTML file that you want to import or link. This argument is ignored unless the Transfer Type argument is set to Import HTML or Link HTML.

Arguments: Code Page: The name of character set used with the code page (eg, Arabic, Chinese). Default Western Europe (set in Control Panel). SendObject includes the specified database object in an email message, but your mail application must be able to support Microsoft Mail Applications Programming Interface(MAPI) - Mulberry and ExecMail do not. Similar to File / Send To.

13.4 OutputTo outputs the data from a database table, query, form spreadsheet, report or module to a file in xls, rtf, html, txt format (similar to File / Export with Save Formatted selected). Arguments:

Object type: Table, Query, Forms, Report, Macro, Module etc;

Object Name: Name of the object;

Object Format: rtf, txt, html, xls etc;

Output File: Full name of file;

AutoStart: Yes if output is to be created immediately;

Template File: Only applies to HTML output.

Task 14 Events

Objectives To understand what actions are relevant to which events on a form so that macros are activated at the right time, and not too many times.
Comments Virtually every activity that occurs on the screen is an event: moving or clicking the mouse; pressing and releasing a key; moving the cursor to a control; changing the contents of a control; opening or closing a form; printing a report. There is no point recalculating a value if the data has not been changed. There is no point activating a macro when you click a button, if you have no button to click.

14.1 Open the Patients form in Design View and show the Event properties for the form.

[image: image9.png]g form
|
Fomet | ota Event | ter | a1 |
R

Firsoim:

Ao st

Before Update

e Upcte

onoity

ontnde

on pes

efore el o
Aiter oo Conm

on open

ontewd

e

onrioad

on Cese

on Adivate

on Deacivete

on 6ot Fous

on st Fos

oncick

onDbiciek

e
i

OntowseUp

On House Wheel

on ey Down

onkeytp

on ey press

G 5
(et

onFiker

on Aoply Fiar

ity

] o
T

On o Ertled

5

 Figure 8 - patients form in design view

You will notice that there are a lot of events you can place on a form! The most common ones to use are: On Open, On Close and On Current.

14.2 Look at the Event properties for a text field.

[image: image10.png]X
Format | oata Evert | other | a1 |

Figure 9 - event properties

You will notice there are fewer events. The most common ones to use are the update and exit events. It is more efficient to use After Update on a field rather than a form, since then the update actions will only take place when that particular field changes. On the other hand, if you want the actions to take place regardless of which field is updated, then you would place it on the form to save you from having to add it to each field. A combo box has an extra On Not In List event (which you saw in use in Task 1 when refreshing a combo box).

14.3 Look at the Event properties for a label.

There are no event properties because a label does not do anything except clarify what is being shown on the screen.

14.4 Look at the Event properties for a section:

[image: image11.png]Fomet | Data
oncick

onoh Gk

on Houss Down
on e ove
onvanel

Svert | oter | |

Figure 10 - event properties for a section

14.5 Look at the Event properties for a button:

[image: image12.png]4 Command Button: Commandshowall x|

Fomet | Data Evenc | oter | A1 |
onrter
- onea
on 6ot Focs
on st Fos
on Click [Event Procedure]
onDbiciek
e
i
OntouseUp
 onkeyDoun
onkeytp
onteypres

Figure 11 - event properties for a button

One would normally activate a set of actions by clicking the button.

· Create a macro to show a message when you move over a button on your My patients form.

14.6 Look at the Event properties for a report:

[image: image13.png]X
Fomat | oata Event | other | a1 |

Figure 12 - event properties for a report

Events only happen when you use a whole report, or a section since it is displaying output and has no navigational facilities. The section event is useful if there is no text value to show in a particular section, so you can avoid printing out just the label.

Sequence of events

It is important to understand the sequence of events to select the right event from which to run a macro (more information is given in Appendix D).

When you open a form, the sequence of events is:

Open  Load  Resize  Activate  Current.

You can assign an action on any of these events that is, On Open, On Load etc but how does one know which one to use and why are there so many?

The reason is that you may want several actions to happen but not all at the same time. One normally chooses On Open, but if you want another action slightly after the first, then you put it on On Load.
When you close a form, the sequence of events is:

Unload  Deactivate  Close.

When you move to another control:

Enter GotFocus.

Exit LostFocus.

When you add a new record (updating an existing record does not do the inserts):

BeforeInsert  BeforeUpdate  AfterUpdate  AfterInsert.

When you change the contents of a text or combo box:

KeyDown  KeyPress  BeforeInsert  Change  KeyUp.

When you assign a macro to an event, you affect the default processing that normally happens. For example, when you change the value in a text box, the control recognises the BeforeUpdate event. By default, Access updates the control which then recognises the AfterUpdate event. By trapping the BeforeUpdate event, you can check if the edited value satisfies more complex validation. Since it runs the macro before the default behaviour takes place, the default behaviour can be cancelled. If the changed value fails to satisfy validation rules, you can cancel default behaviour with the CancelAction action.

Type of events

Data events occur when data is entered, deleted, or changed in a form or control, or when the focus moves from one record to another. You simplify an application by creating a validation macro to test a value when leaving the control, or a lookup macro that synchronises a form to the value in a combo box when the user selects a value.

Error and timing events are used for error handling and synchronizing data on forms or reports.

Filter events occur when you apply or create a filter on a form.

Focus events occur when a form or control loses or gains the focus, or a form or report becomes active or inactive.

Keyboard events occur when you type on a keyboard, or when keystrokes are sent using SendKeys. Mouse events occur when a mouse action is carried out such as pressing down or clicking a mouse button. Print events occur when a report is being printed or is being formatted for printing.

Window events occur when you open, resize, or close a form or report. It is important to know that most of the data events that occur when you work interactively, do not occur when you use SetValue to change data values or add new values. BeforeUpdate, AfterUpdate, BeforeInsert, AfterInsert and Change are not recognised until you save the record by moving to another. On a report you can only use SetValue when the control is unbound and not calculated.

Appendix A Limitations of macros

You should use Visual Basic (modules) instead of macros if you want to: Make your database easier to maintain. Because macros are separate objects from the forms and reports that use them, a database containing many macros that respond to events on forms and reports can be difficult to maintain. In contrast, Visual Basic event procedures are built into the form's or report's definition. If you move a form or report from one database to another, the event procedures built into the form or report move with it.

· Create your own functions. Microsoft Access includes many built-in functions, such as the ucase function, which converts text to upper case. You can use these functions to perform calculations without having to create complicated expressions. Using Visual Basic, you can also create your own functions either to perform calculations that exceed the capability of an expression or to replace complex expressions. In addition, you can use the functions you create in expressions to apply a common operation to more than one object.

· Mask error messages. When something unexpected happens while a user is working with your database, and Microsoft Access displays an error message, the message can be quite mysterious to the user, especially if the user isn't familiar with Microsoft Access. Using Visual Basic, you can detect the error when it occurs and either display your own message or take some action.

· Create or manipulate objects. In most cases, you'll find that it's easiest to create and modify an object in that object's Design View. In some situations, however, you may want to manipulate the definition of an object in code. Using Visual Basic, you can manipulate all the objects in a database, as well as the database itself.

· Perform system-level actions. You can carry out the RunApp action in a macro to run another Windows-based or MS-DOS–based application from your application, but you can not use a macro to do much else outside Microsoft Access. Using Visual Basic, you can check to see if a file exists on the system, use Automation or dynamic data exchange (DDE) to communicate with other Windows-based applications such as Microsoft Excel, and call functions in Windows dynamic-link libraries (DLLs).

· Manipulate records one at a time. You can use Visual Basic to step through a set of records one record at a time and perform an operation on each record (see the split name example). In contrast, macros work with entire sets of records at once.

· Pass arguments to your Visual Basic procedures. You can set arguments for macro actions in the lower part of the Macro window when you create the macro, but you can not change them when the macro is running. With Visual Basic, however, you can pass arguments to your code at the time it is run or you can use variables for arguments - something you can not do in macros. This gives you a great deal of flexibility in how your Visual Basic procedures run.

Global macros can be converted to Visual Basic.

Appendix B Macro actions by category

Opening and closing tables, queries, forms and reports

	Macro action
	Purpose

	Close
	Closes specified or active window for a table, query, form or report.

	OpenForm
	Opens a form in Form, Datasheet or Design View, or in Print Preview. Can apply filter or Where condition.

	OpenModule
	Opens a module in Design view and displays the named procedure.

	OpenQuery
	Opens a query in Datasheet, Design view or in Print Preview. If an action query, updates performed. To specify parameters for an Action query, use the RunSQL action.

	OpenReport
	Opens a report in Print Preview (the default), prints the report, or opens the report in Design View. For Print and Print Preview, can also specify a filter or Where condition.

	OpenTable
	Opens a table in Datasheet or Design View or in Print Preview.

	RunSQL
	Executes the specified SQL Insert, Delete, Select...Into, or Update statement. Can refer to form controls in the statement to limit the affected records.

Actions that can print data

	Macro action
	Purpose

	OpenForm
	Can also open in Print Preview. Can specify a filter or Where condition.

	OpenQuery
	Can also open in Print Preview.

	OpenReport
	Prints a report or opens a report in Print Preview. Can specify a filter or Where condition.

	OpenTable
	Can also open in Print Preview.

	OutputTo
	Outputs the named table, query, form, report or module to Excel (XLS), Word (RTF), or Notepad text (TXT) file, and optionally starts the application to edit the file. For forms, the data is output from the form's Datasheet View. For reports, Access outputs all controls containing data (including calculated controls) except memo, OLE and subform or subreport controls.

	PrintOut
	Prints the active datasheet, form or report. Can specify a range of pages the print quality, the number of copies and collation. Use an Open action first if you want to apply a filter or Where condition.

Testing conditions and controlling action flow

	Macro action
	Purpose

	CancelEvent
	Cancels the event that caused the macro to be executed so does not continue. Use to cancel an update of data if BeforeUpdate causes validation to run and fails. Can't use CancelEvent in macros that define menu commands, in OnClose for a report, or in macros triggered by the AfterUpdate, OnCurrent, OnEnter or OnPush event.

	DoMenuItem
	Executes a command on a standard Access menu. Can use DoMenuItem in a macro that defines a custom menu to make selected Access menu commands available in the custom menu.

	Quit
	Closes all Access windows and exits Access.

	RunCode
	Executes an Access Basic function procedure. Other actions following this action execute after the function completes. (Note: to execute an Access Basic sub procedure, call that procedure from a function procedure.

	RunMacro
	Executes another macro. Actions following this action execute after other macro completes.

	StopAllMacros
	Stops all macros, including any macros that called this macro.

	StopMacro
	Stops the current macro.

Setting values

	Macro Action
	Purpose

	Requery
	Refreshes the data in a control that is bound to a query (such as a list box, combo box, subform or a control based on an aggregate function such as DSum). When other actions (such as inserting or deleting a row in the underlying query) might affect the contents of a control that is bound to a query, use Requery to update the control values. Use Requery without an argument to refresh the data in the form or datasheet.

	SendKeys
	Places keystrokes into the keyboard buffer. If you intend to send keystrokes to a modal form or dialog box, you must execute SendKeys before opening the modal form or dialog box.

	SetValue
	Changes the value of any updateable control or property. For example, you can use SetValue to calculate a new total in an unbound control or to affect the Visible property of a control (which determines whether you can see that control).

Searching for data

	ApplyFilter
	Restricts the information displayed in a form or report by applying a named filter or query or SQL WHERE clause to the underlying table or query of the form.

	FindNext
	Finds the next record that meets the criteria previously set or by Find Record in the Find dialog box.

	FindRecord
	Finds a record that meets the search criteria. Can specify in the macro action all the parameters available in the Find dialog box.

	GoToRecord
	Moves to a different record and makes it current in the specified table, query or form. Can move to the first, last, next or previous record. When you specify 'next' or 'previous', can move more than one record. Can also go to a specific record number or to the new-record placeholder at the end of the set.

Building a custom menu and executing menu commands

	AddMenu
	Adds a dropdown menu to a custom menu bar for a form or report. This is the only action allowed in a macro referenced by a Menu Bar property. Each AddMenu macro action must have a name that corresponds to the menu name on the menu bar of the custom menu. The argument to AddMenu specifies the name of another macro that contains all the named commands for the menu and the actions that correspond to those commands. An AddMenu action can also refer to another macro that uses an AddMenu action to build submenus.

	RunCommand (DoMenuItem in Access 97)
	Executes a command on one of the standard Access menus. Use this macro within a custom menu bar to make selected Access menu commands (eg, align, cleargrid, refresh, close) available in the custom menu.

Informing the user of actions

	Beep
	Causes a sound

	MsgBox
	Displays a warning or informational message and optionally produces a sound. You must click OK to dismiss the dialog box and proceed.

	SetWarnings
	When enabled, causes an automatic Yes or OK response to all system warning or informational messages while a macro runs. Does not halt the display of error messages. Use this macro with Echo set to Off to avoid displaying the messages.

Controlling display and focus

	Echo
	Controls the display of intermediate actions while a macro runs.

	GoToControl
	Sets the focus to the specified control.

	GoToPage
	Moves to the specified page in a report or form.

	Hourglass
	Sets the mouse pointer to an hourglass icon while a macro runs.

	Maximize
	Maximizes the active window.

	Minimize
	Minimizes the active window.

	MoveSize
	Moves and sizes the active window.

	RepaintObject
	Forces the repainting of the window for the specified object. Forces recalculation of any formulas in controls on that object.

	Requery
	Refreshed the data in a control that is bound to a query (such as a list box, combo box, subform or a control based on an aggregate function such as DSum). When other actions (such as inserting or deleting a row in the underlying query) might affect the contents of a control that is bound to a query, use Requery to update the control values. Use Requery without an argument to refresh the data in the active object (form or datasheet).

	Restore
	Restores a maximized or minimized window to its previous size.

	SelectObject
	Selects the window for the specified object. Restores the window if it was minimized.

	SetWarnings
	When enabled, causes automatic Yes or OK response to all system warning or informational messages while a macro runs. Does not alter the display of error messages. Use with Echo set to Off to avoid displaying the messages.

	ShowAllRecords
	When enabled, causes automatic Yes or OK response to all system warning or informational messages while a macro runs. Does not halt the display of error messages. Use with Echo set to Off to avoid displaying the messages.

Renaming, copying, deleting, importing and exporting

	CopyObject
	Copies any object in the current database with a new name or with any specified name in another Access database.

	DeleteObject
	Deletes any table, query, form, report, macro or module.

	OutputTo
	Outputs the named table, query, form, report or module to an Excel (XLS), Word (RTF) or Notepad text (TXT) file, and optionally starts the application to edit the file. For forms, the data output is from the form's datasheet view. For reports, Access outputs all controls containing data (including calculated controls) except memo, OLE and subform or subreport controls.

	Rename
	Renames the specified object in the current database.

	SendObject
	Outputs a table datasheet, query datasheet, form datasheet, data in text boxes on a report, or a module listing to an Excel format (XLS), Rich Text Format (RTF), or text (TXT) and embeds the data in an electronic mail message. Can specify to whom the message is to be sent, the message subject, additional message text, and whether the message can be edited before it is sent. You must have electronic mail software installed that conforms to the Mail Application Programming Interface (MAPI) standard.

	TransferDatabase
	Exports data to or import data from another Access, dBASE®, Paradox®, Btrieve®, or SQL database. Can also use this action to attach tables or files from other access, dBASE, Paradox, Btiieve or SQL databases.

	TransferSpreadsheet
	Exports data to or imports data from Excel or Lotus®1-2-3® spreadsheet files. (Note: can import spreadsheet data from Excel versions 3 and 4, but cannot export Access data to these types of files.)

	TransferText
	Exports data to or imports data from text files.

Running another application for MS-DOS or Windows

	RunApp
	Starts another application for MS DOS or Windows.

Appendix C Data events
Data events occur when data is entered, deleted, or changed in a form or control, or when the focus moves from one record to another.

	Event
	Event property
	When it occurs
	When to use

	AfterDelConfirm
	AfterDelConfirm (forms)
	After you confirm record deletions and the records are actually deleted, or after the deletions are cancelled.
	Returns status information about the deletion. Use to recalculate totals affected by the deletion of records.

	AfterInsert
	AfterInsert (forms)
	After a new record is added to the database. Occurs after AfterUpdate.
	Use to requery a recordset whenever a new record added.

	AfterUpdate
	AfterUpdate (forms, controls)
	After a control or record is updated with changed data. Occurs when the control or record loses focus, or you click Save Record on the Records menu. Occurs for new and existing records.
	Use to display a different page on a form, or move focus to a particular control depending on the changed value.

	BeforeDelConfirm
	BeforeDelConfirm (forms)
	After records are deleted to buffer, but before Access displays a dialog box asking you to confirm or cancel the deletion.
	Cancelling the deletion restores the records from the buffer and prevents Delete Confirm dialog box from being displayed.

	BeforeInsert
	BeforeInsert (forms)
	When you type the first character in a new record, but before the record is added to the database.
	Use to perform complex validations.

	BeforeUpdate
	BeforeUpdate (forms, controls)
	Before a control or record is updated with changed data. Occurs when the control or record loses the focus, or you click Save Record on the Records menu. Occurs for new and existing records.
	Use to perform complex validations, such as those involving conditions for more than one value on a form or display different error messages for different data entered. Should use ValidationRule and Required properties for simple validation.

	Change
	OnChange (controls)
	When the contents of a text box or combo box changes; eg, when you type a character in the control or change the Text property of the control using a macro. It does not occur when a value changes in a calculated control or when you select an item from the combo box list.
	To coordinate data display among controls. Can also display data or a formula in one control and the results in another control. Avoid cascading caused by: attaching a Change macro to a control that alters the control's contents; or by creating controls having Change events that affect each other- for example, two text boxes updating each other.

	Current
	OnCurrent (forms)
	When the focus moves to a record, making it the current record, or when you requery a form's data source. Occurs when form first opened, and when the focus leaves one record and moves to another. Also occurs when you click Remove Filter/Sort on the Records menu, use ShowAllRecords or Requery.
	Use when moving from record to record. Use to display a message or synchronize records in another form related to the current record. You can also perform calculations based on the current record or change the form in response to data in the current record.

	Delete
	OnDelete (forms)
	When a record is deleted, but before deletion confirmed and performed. You can delete several records at a time. Occurs after each record deleted. The Current event for the record following the last deleted record and the Enter and GotFocus events for the first control in this record do not occur until all the records are deleted. If you cancel the Delete, BeforeDelConfirm and AfterDelConfirm do not occur and the Delete Confirm dialog box is not displayed.
	This enables you to access the data in each record before it's actually deleted, and selectively confirm or cancel each deletion in the Delete macro.

	Dirty
	OnDirty (forms)
	When the contents of a form or the text portion of

a combo box changes. It also occurs when you move from one page to another page in a tab control.
	You can determine if the record can be changed. You can also display a message and ask for edit permission.

	NotInList
	OnNotInList (controls)
	When a value is entered in a combo box that isn't in the combo box list.
	Use to add the new value to the look up table.

	Updated
	OnUpdated (controls)
	When an OLE object's data has been modified (on a form not report).
	To determine if an object’s data has been changed since last saved.

Filter events
Filter events occur when you apply or create a filter on a form.

	Event
	Event property
	When it occurs
	When to use it

	ApplyFilter
	OnApplyFilter (forms)
	When you use Apply Filter it applies the most recently created filter (created using Filter by Form or Advanced Filter/Sort).

When you use Filter By Selection it applies a filter based on the current selection in the form.

When you use Remove Filter/Sort it removes any filter (or sort) currently applied to the form.

When you close the Advanced Filter/Sort window or the Filter by Form window.
	To make sure filter being applied is correct. For example, to be sure any filter applied to a form includes criteria restricting a date field. To do this, check the form's Filter property value to make sure this criteria is included in the where clause.
To change the display of the form before the filter is applied, eg to disable or hide some fields that are not appropriate.

To undo or change actions you took when the Filter event occurred. For example, to disable or hide form controls when the user is creating the filter, because you do not want these controls included in the filter criteria. You can then enable or show these controls after the filter is applied.

	Filter
	OnFilter (forms)
	When you click Filter By Form you can create a filter based on the fields in the form. When you click Advanced Filter /Sort you can create complex filters for the form.
	To remove any previous filter, set the Filter property of the form to a zero-length string (" ") in the Filter macro. Useful if you want to check extraneous criteria do not appear in the new filter (when you use Filter By Selection, the criteria is added to the Filter where clause).
To enter default settings for the new filter, set the Filter property to include these criteria, eg to display only current products.

To use your own custom filter window instead of an Access one, open your own custom form and use the entries to set the Filter property and filter the original form. When the user closes this custom form, set the FilterOn property of the original form to True (–1) to apply the filter. Cancelling the Filter event prevents the Access filter window from opening.

To prevent controls on the form from appearing or used in the Filter By Form window. If you hide or disable a control in the Filter macro, the control is hidden or disabled in the Filter By Form window, and can not be used to set filter criteria. You can then use ApplyFilter to show or enable this control after the filter is applied, or removed from the form.

Focus events
Focus events occur when a form or control loses or gains the focus, or a form or report becomes active or inactive. A form can only get the focus if all visible components are disabled or there are no controls on the form.

	Event
	Event property
	When it occurs
	When to use

	Activate
	OnActivate (forms, reports)
	When a form or report becomes the active window. An Open event does not occur on a form that is already open but not activated, whether you switch to the form or run a macro to open the form again
	Use Activate rather than Open if timing is not critical. Since it happens both when you open a form, and when it is made active, it will always run. Could use to ask user which printer, how many copies.

	Deactivate
	OnDeactivate (forms, reports)
	When a different Access window becomes the active window, but before the window becomes the active window. Does not occur when the focus moves to another application's window, a dialog box, or a pop-up form. When you switch between two open forms that contain active controls, Access triggers a Deactivate event of the first form and an Activate on the second.
	Use Activate and DeActivate when moving to and from the form.

	Enter
	OnEnter (controls)
	Before a control actually receives the focus, either from a control on the same form or when the form opens. Occurs before GotFocus.
	Because the Enter event occurs before the focus moves to a particular control, use to display instructions; eg, display a small form or message box identifying the type of data it typically contains, or instructions on how to use the control.

	Exit
	OnExit (controls)
	Just before a control loses the focus to another control on the same form. Occurs before the LostFocus.
	If you only care which control is current, use Enter and Exit, if you want to run the same code each time a control gets focus from another window, use GotFocus and LostFocus too.

	GotFocus
	OnGotFocus (forms, controls)
	When a control, or form receives the focus. GotFocus differs from Enter in that GotFocus occurs every time a control receives the focus. For example, the user clicks a form check box, clicks a report, and then finally clicks the form check box to bring it to the foreground. GotFocus occurs both times the check box receives the focus. In contrast, the Enter event occurs only the first time the user clicks the check box. Occurs after the Enter event.
	You can specify what happens when a form or control receives the focus by running a macro when the GotFocus event occurs. For example, by attaching a GotFocus macro to each form control, you can guide the user through by displaying brief instructions or messages in a text box. You can also provide visual cues by enabling, disabling, or displaying controls that depend on the control with the focus.

	LostFocus
	OnLostFocus (forms, controls)
	When a control, or form loses the focus. LostFocus differs from the Exit event in that LostFocus occurs every time a control loses the focus. The Exit event occurs only before a control loses the focus to another control on the same form. Occurs after the Exit event.
	Use Enter, Exit, GotFocus, LostFocus to move from control to control.

Keyboard events
Keyboard events occur when you type on a keyboard, or when keystrokes are sent using the SendKeys action or the SendKeys statement. A form can have the focus only if all visible controls are disabled, or there are no controls on the form.

	Event
	Event property
	When it occurs
	When to use

	KeyDown
	OnKeyDown (forms, controls)
	When you press any key on the keyboard while a control or form has the focus.

KeyDown also occurs if you send a keystroke to a form or control using the SendKeys action in a macro.

A form also receives all KeyDown events (even those for controls) before they occur for the controls if you set the form's KeyPreview property to Yes.

If you hold down a key, the KeyDown event occurs repeatedly.
	Although the KeyDown and KeyUp events occur when most keys are pressed, they are typically used to recognize or distinguish between:
extended character keys, such as function keys;
navigation keys, such as <Home>, <End>;
combinations of keys and standard keyboard modifiers (<Shift>, <Ctrl>, or <Alt> keys);
the numeric keypad and keyboard number keys.

	KeyPress
	OnKeyPress (forms, controls)
	When you press and release a key or key combination producing a standard ANSI character while a control or form has the focus. Upper and lower case characters are distinguished

Also occurs if you send a keystroke producing a standard ANSI character to a form or control using SendKeys.

A form also receives all KeyPress events (even those for controls) before they occur for the controls if you set the form's KeyPreview property to Yes.

If you hold down a key, the KeyPress event occurs repeatedly.
	You can use the KeyPress event to respond to keystrokes entered in a text box or combo box.

For keystrokes not recognized by KeyPress, such as function or navigation keys, use KeyDown and KeyUp.

	KeyUp
	OnKeyUp (forms, controls)
	When you release a pressed key while a control or form has the focus. The object with the focus receives all the keystrokes.

Also occurs if you send a keystroke to a form or control using the SendKeys action.

A form also receives all KeyUp events (even those for controls) before they occur for the controls if you set the form's KeyPreview property to Yes.

If you hold down a key, the KeyUp event occurs after all the KeyDown and KeyPress events have occurred.
	See KeyDown

Mouse events

Mouse events occur when a mouse action is carried out such as pressing down or clicking a mouse button.
	Event
	Event property
	When it occurs
	When to use

	Click
	OnClick (forms, controls)
	Occurs when click the left mouse button on a control, a record selector, or an area outside a section or control.
	On a form button

	DblClick
	OnDblClick (forms, controls)
	When you click the left mouse button twice on a control, on a blank area, or record selector on the form.
	On a form button when you want a different courses of events to happen than just clicking the button once.

	MouseDown
	OnMouseDown (forms, controls)
	When you press a mouse button while the pointer is on a form or control.

Cancelling the MouseDown event using the CancelEvent action in a macro for a form or control prevents the shortcut menu from being displayed when you right-click the form or control.
	Use MouseDown or MouseUp to specify what happens when a particular mouse button is pressed or released. Unlike Click and DblClick, they enable you to distinguish between left, right, and middle mouse buttons. You can also write code for mouse-keyboard combinations that use the <Shift>, <Ctrl>, and <Alt> keys.

	MouseMove
	OnMouseMove (forms, controls)
	When you move the mouse pointer over a form, form section, or control.
	To display extra help

	MouseUp
	OnMouseUp (forms, controls)
	When you release a pressed mouse button while the pointer is on a form or control.
	See MouseDown

Print events
Print events occur when a report is being printed or is being formatted for printing.

	Event
	Event property
	When it occurs
	When to use

	Format
	OnFormat (reports)
	When Access determines which data goes in a report section, but before it formats the section for previewing or printing. Your macro can use data in the current record to make changes to the page layout.
	A Format event occurs for each section in a report. This allows you to create complex running calculations by using data from each section, including sections that aren't printed.

	NoData
	OnNoData (reports)
	After Access formats a report for printing that has no data (the report is bound to an empty recordset), but before the report is printed..
	Use to cancel printing of a blank report.

	Page
	OnPage (reports)
	After Access formats a page for printing, but before the page is printed.
	Use to draw a border around the page, or add other graphic elements. You normally use the Line, Circle, or Pset methods in the Page event procedure to create the desired graphics for the page.

	Print
	OnPrint (reports)
	After Access has formatted the data in a report section, but before the section is printed.
	For changes that don't affect page layout or for macros that should run only after the data on a page has been formatted, such as a macro that prints page totals.

	Retreat
	OnRetreat (reports)
	When Microsoft Access must "back up" past one or more report sections on a page in order to perform multiple formatting passes. This occurs after the section's Format event, but before the Print event. The Retreat event for each section occurs as Microsoft Access backs up past the section. This allows you to undo any changes you have made during the Format event for the section.
	You can run a macro when the Retreat event occurs to undo any changes that you made when the Format event occurred for the section. This is useful when your Format macro carries out actions, such as calculating page totals or controlling the size of a section, that you want to perform only once for each section.

Window events
Window events occur when you open, resize, or close a form or report:

	Event
	Event property
	When it occurs
	When to use

	Close
	OnClose (forms, reports)
	When a form or report is closed and is removed from the screen.
	One big difference between Close and UnLoad is that Unload can be cancelled, but the Close can not.

	Load
	OnLoad (forms)
	When a form is opened and its records are displayed. Occurs before the Current event, but after the Open event.
	One big difference between Open and Load is that Open can be cancelled, but Load can not. For example, if you are dynamically building a record source for a form in an event procedure for the form's Open event, you can cancel opening the form if there are no records to display.

	Open
	OnOpen (forms, reports)
	When a form is opened but before the first record is displayed.

When a report is opened but before it prints.
	By running a macro when a form's Open event occurs, you can close another window or move the focus to a particular control on a form. You can also run a macro that asks for information needed before the form or report is opened or printed. For example, an Open macro can open a custom dialog box in which the user enters the criteria for the set of records to display.

	Resize
	OnResize (forms)
	When the size of a form changes. This event also occurs when a form is first displayed.
	By running a macro or an event procedure when a Resize event occurs, you can move or resize a control, when the form it's on is resized. You can also use a Resize event to recalculate variables or reset properties that may depend on the size of the form.

	Unload
	OnUnload (forms)
	When a form is closed and its records are unloaded, but before it is removed from the screen. Occurs before Close event.
	The Unload event can be cancelled, but the Close event can not.

Error and timing events
The following events are used for error handling and synchronizing data on forms or reports:

	Event
	Event property
	When it occurs
	When to use

	Error
	OnError (forms, reports)
	When a run-time error is produced while in the form or report. Includes Jet Database Engine errors, but not run-time errors in Visual Basic. (Since macros can't determine what error has occurred, you normally use Visual Basic event procedures with this event.)
	By running a macro when an Error event occurs, you can intercept a Microsoft Access error message and display a custom message that conveys a more specific meaning for your application.

	Timer
	OnTimer (forms)
	When a specified time interval passes, as specified by the TimerInterval property of the form. You can use the Timer event to keep data synchronized in a multiuser environment by requerying or refreshing data at specified intervals.
	By running a macro when a Timer event occurs, you can control what Microsoft Access does at every timer interval. For example, you might want to requery underlying records or repaint the screen at specified intervals.

Appendix D Order of events

Order of events for controls on forms
Events occur for controls on forms when you move the focus to a control, and when you change and update data in a control.

Moving the focus to a control

When you move the focus to a control on a form - eg, by opening a form that has one or more active controls or by moving to another control on the same form, the following events occur in this order:

Enter  GotFocus

If you are opening a form, these events occur after the events associated with opening the form (such as Open and Current), as follows:

Open (form)  Activate (form)  Current (form)  Enter (control)  GotFocus (control)

When the focus leaves a control on a form - eg, when you close a form that has one or more active controls or move to another control on the same form, the Exit and LostFocus events occur in this order:

Exit  LostFocus

If you are closing a form, the Exit and LostFocus events occur before the events associated with closing the form (such as Unload, Deactivate, and Close), as follows:

Exit (control)  LostFocus (control)  Unload (form)  Deactivate (form)  Close (form)

Changing and updating data in a control

When you enter or change data in a control on a form and then move the focus to another control, the following events occur in this order:

BeforeInsert  BeforeUpdate  AfterUpdate  AfterInsert.

The Exit and LostFocus events for the changed control occur after the BeforeUpdate and AfterUpdate events:

BeforeUpdate  AfterUpdate  Exit  LostFocus.

When you change the text in a text box or in the text box portion of a combo box, the Change event occurs. Occurs whenever the contents of the control change, but before you move to a different control or record (and thus, before the BeforeUpdate and AfterUpdate events occur). The following sequence of events occurs for each key you press in a text box or in the text box portion of a combo box:

KeyDown  KeyPress  Change  KeyUp.

The NotInList event occurs after you enter a value in a combo box that isn't in the combo box list and then attempt to move to another control or record. It occurs after the keyboard events and the change events for the combo box, but before any other control or form events. If the LimitToList property of the combo box is set to Yes, the Error event for the form occurs immediately after the NotInList event:

KeyDown  KeyPress  Change  KeyUp  NotInList  Error.

· Double-click on Forms and then on all forms (or loaded forms if the form is already open) and select the name of the form Patients.

· The bottom middle screen shows the names of the controls, the right bottom screen the properties of the controls. Select Gender and double-click. Note that the labels have names preceded by text and have less properties. Note that Forms![Patients]![Gender] appears in the top screen identifying that the gender value is being displayed by the patients form.

· Click on the = icon and then type “f” to select female patients (you do not get any help with the value). Character constants are enclosed by double or single quotes, numeric constants by nothing, and date constants by # (eg, #1 jan 1904#). You could compare the value with another value on the form.

· Click on OK to get back to the macro designer.

Note Forms![Patients]![Gender]=”f” has been inserted into the where argument.

Aims and Learning Objectives

By the end of this course you will be able to:

create buttons on a form to automate your database;

create simple macros;

create conditional macros;

run the macros in different ways depending on the situation.

Introduction

Buttons on Access forms perform an action when you click them in form view. Macros consist of a list of actions designed to perform a single task or a series of common tasks automatically, such as opening a form or printing a report. This course guides you through the processes needed to create buttons and macros and therefore begin to automate your database.

Prerequisites

Attendance on Information Services course Using and designing Access databases (code CC1ACC).

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

University of Bristol Information Services document acc-t10

 COMMENTS * MERGEFORMAT
1

[image: image26.png]

_1135588062

_1192613089

_1192613118

_1192613198

_1192613103

_1182936875

_1192613076

_1135581887

